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Exposure to crystalline silica can result in damage to the lung parenchyma and scarring that can lead to fibrosis. Pulmonary damage may be the
direct consequence of toxic interaction between quartz particles and cell membranes, or it may be due to silica-induced production of oxidant
species by pulmonary phagocytes, that in turn overwhelms pulmonary antioxidant systems and causes lung injury. Data indicate that grinding or
fracturing quartz particles breaks Si-O bonds and generates Si and Si-0 radicals on the surface of the cleavage planes. Upon contact with water,
these silica-based radicals can generate hydroxyl radicals (OH). These surface radicals decay as fractured silica dust is aged. Freshly fractured quartz
is significantly more potent than aged silica in directly causing lipid peroxidation, membrane damage, and cell death. Furthermore, freshly ground sil-
ica is a more potent stimulant of alveolar macrophages than aged silica. This silica-induced activation results in the production of superoxide (O°),
hydrogen peroxide (H202), nitric oxide (NO), and other oxidant species that can damage lung cells. Tetrandrine, an herbal medicine that exhibits
antifibrotic activity in rat models of silicosis, effectively blocks the ability of quartz to stimulate oxidant release from pulmonary phagocytes.
- Environ Health Perspect 102(Suppl 10):65-68 (1994)
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Introduction
Occupational exposure to crystalline silica
can result in the development of pul-
monary fibrosis. Acute silicosis can develop
rapidly (1-3 years) after inhalation of rela-
tively high levels of silica dust. This acute

disease is associated with dyspnea, fatigue,
cough, and weight loss, and is character-
ized histologically by alveolar proteinosis
and diffuse fibrosis (1). Chronic silicosis
can develop over a period of 20 to 40 years

and may progress from simple silicosis with
few symptoms to progressive massive fibro-
sis where restrictive lung impairment is evi-
dent. Histologically chronic silicosis is
characterized as nodular fibrosis with colla-
gen arranged in a unique spiral pattern

(2,3).
Cellular injury and tissue damage are

believed to be important steps in the devel-
opment of silicosis (4). Damage to the lung
parenchyma may result from the direct tox-

icity of silica or indirectly from silica-
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induced activation of pulmonary phago-
cytes to produce oxidant species that in
turn injure lung cells (5).

Several theories have been advanced to
explain the direct cytotoxicity of crystalline
silica. The first is that silanol groups
(SiOH) can form hydrogen bonds with the
oxygen or nitrogen groups in biologic
membranes causing loss of membrane
integrity and cell death (6). A second
theory is that the negative surface charge
associated with SiO- groups is critical to
cytotoxicity (7). A third theory is that radi-
cal sites are present on the surface of silica
that may contribute to its ability to injure
lung tissue (8).

Crystalline silica may also damage the
lung indirectly by stimulating the produc-
tion of phagocyte-derived oxygen metabo-
lites. Such oxidants include superoxide
anion (O°), hydrogen peroxide (H209,
and hydroxyl radical (-OH) (9). Indeed,
O, H202, and -OH have been associated
with membrane damage and cell lysis
(10,11), and can damage tight junctions
between epithelial cells in culture (12). In
addition to reactive oxygen metabolites,
recent evidence indicates that activated
macrophages can generate nitric oxide NO-
(13). Once formed, NO- can react with
°2 to produce a potent oxidant, peroxyni-
trite (14).

The objective of this review is to sum-
marize data, collected in my laboratory in
collaboration with several scientists, that
supports the theory that silica can directly

generate radicals as well as stimulate radical
production in alveolar macrophages.

Results and Discussion
Occupations such as sandblasting, silica
flour milling, rock drilling, and tunneling
are associated with relatively high risks of
pulmonary fibrosis. Common to these
operations is crushing, grinding, or fractur-
ing silica particles and generating fresh sur-
faces. While fracturing the crystalline
lattice of quartz, Si-O bonds would break
and surface radicals form. This theory can
be tested by grinding silica and measuring
radical species using an electron spin reso-
nance (ESR) spectrometer (15). Data indi-
cate that surface radicals are generated
during the fracturing of quartz. A typical
ESR signal for a dry sample of freshly
ground silica is given in Figure IA. This
signal, centered around g = 2.0015, is char-
acteristic of -Si or Si-O radicals. The
intensity of this signal (peak to peak) is
proportional to the number of surface radi-
cals and decays with aging (Figure 1B).
The half-life for the decay of these surface
radicals in air is approximately 30 hr.

These silicon-based surface radicals can
react in aqueous solution to generate oxy-
genated free radicals. Such radical produc-
tion can be monitored by ESR using
DMPO (5,5-dimethyl-l-pyroline-l-oxide)
as a spin trap (16). As shown in Figure 2A,
an ESR spectrum centered around
g = 2.0059 and exhibiting a 1:2:2:1 quartet
pattern is obtained that is characteristic of
a DMPO-OH adduct. Indeed, ethanol, an
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-OH radical scavenger, decreases this quartet

pattern. It is likely that the Fenton reaction
is involved in the generation of OH radi-
cals, since both the H202 scavenger (cata-
lase) and the Fe2+ chelator (desferal)
decrease the -OH signal (Figure 2C, E).
The ability of ground silica to generate

-OH in aqueous solution decays with
aging, exhibiting a half-life of approxi-
mately 20 hr.
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Figure 1. (A) ESR signal generated from a dry sample of

crystalline silica immediately after grinding in air for 30
min. (B) Decay of silicon-based radical concentration as
a function of aging in air. Data modified from Vallyathan
et al. ( 17).
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Figure 2. ESR signal obtained from freshly ground sil-

ica suspended in aqueous solution containing 100 mM
DMPO (A). DMPO-OH spectrum of fresh silica sus-

pended in the presence of catalase (C) or desferal (E).
Data are modified from Vallyathan et al. (17).

Table 1. Direct toxicity of fresh versus aged silica.a

Parameter Aged Si Fresh Si

Hemolysisb 2 ± 1% 39 ± 1%
Membrane 15 ± 2% 58 ± 8%

leakinessc
Lipid 1.5 ± 0.4 pmol mal 7.5 ± 0.6 pmol mal
peroxidationd

aValues are means ± SE of three or more experiments.
Data modified from Vallyathan et al. (17,18). bPercent
hemolysis of a 2% suspension of red blood cells
exposed to 1 mg/ml of fresh or aged (2 days) silica for
1 hr at 37°C. cMembrane integrity of alveolar
macrophages exposed to 15 mg/ml fresh or aged (14
days) silica for 30 min at 37°C measured by trypan blue
dye exclusion. dMalondialdehyde production of linoleic
acid exposed to 5 mg/ml fresh or aged (4 days) silica
for 1 hr at 37°C.

Grinding of crystalline silica is not only
associated with the generation of radicals
but also results in an increase in the direct
toxicity of silica in vitro (17,18). As shown
in Table 1, freshly ground silica is approxi-
mately 19 times more lytic to red blood
cells than ground dust tested after a 2-day
aging period, is approximately four times
more potent in causing loss of membrane
integrity in alveolar macrophages than sil-
ica aged for 14 days, and induces five times
more lipid peroxidation than quartz aged
for 4 days. Figure 3 shows that there is a

direct correlation between radicals gener-

ated by ground silica and its ability to oxi-
dize lipids in vitro.

To summarize, the direct toxicity of
crystalline silica is due in part to radicals
generated on the cleavage planes of fractured
dust. The enhanced cytotoxicity of fresh
versus aged silica may explain in part the
relatively high incidence of silicosis in sand-
blasters, rock drillers, and silica millers.

Evidence exists that silica can activate
alveolar macrophages to generate oxidants,
and thus indirectly cause lung injury. In
vitro exposure of alveolar macrophages to
silica increases oxygen metabolism by
approximately 3-fold and stimulates chemi-
luminescence approximately 12-fold above
control (19). At least part of this activation
is associated with silica-induced enhance-
ment of °2 and H202 production (Figure
4). Freshly ground silica is a more potent
stimulant of alveolar macrophages than
aged silica (18). Indeed, freshly fractured
silica causes approximately three times more

H202 production and approximately 14
times more chemiluminescence from alveo-
lar macrophages than ground silica, which
was aged for 14 days prior to use (Figure 5).

Silica-induced potentiation of alveolar
macrophages can be demonstrated in vivo.
Figure 6 shows that alveolar macrophages

8

z

0

0

0

Q-

C]

(L
IC

7

6

5

4

3

2

0

RELATIVE OH PRODUCTION

Figure 3. Relationship between the ability of ground
silica to generate 0OH and to cause lipid peroxidation
of linoleic acid. Data were obtained using silica aged
for 0, 1, 2, or 4 days after grinding. Data modified from
Vallyathan et al. ( 17).
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Figure 4. Effect of in vitro exposure of silica on alveolar
macrophages. Cells were exposed at 37°C to 2 mg/ml
silica for oxygen consumption (02) and superoxide
release )D-), to 1 mg/ml silica for hydrogen peroxide
(H202), and to 0.5 mg/ml for chemiluminescence (CL).
Data given as percentage of the resting (unexposed)
levels and are modified from Castranova et al. (19).
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Figure 5. Effect of freshly ground silica vs silica that
was stored for 14 days after grinding on alveolar
macrophages. Hydrogen peroxide (H202) and chemilu-
minescence (CL) are given a percentage of the resting
(unexposed) levels and are modified from Vallyathan et
al. ( 18).
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Figure 6. Effect of inhalation of silica (117 mg/m3 for 6
hr) on H202 production by alveolar macrophages in
response to zymosan (2 mg/ml). Macrophages were
harvested by bronchoalveolar lavage 4 days postexpo-
sure. Data are percentages of the control (filter air) val-
ues and are modified from Castranova et al. (20).
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Figure 7. Effect of in vivo silica exposure on mRNA
levels of the inducible form of nitric oxide synthase in
pulmonary phatocytes. Bronchoalveolar lavage cells
were harvested 1 day after intratracheal instillation of
silica (10 mg/g bw). Cellular mRNA was evaluated for
the inducible form of nitric oxide synthase with a 32p
labeled probe. Data are means ± SE of four experi-
ments and are modified from Blackford et al. (21).

harvested from rats exposed to silica are

primed and produce 56% more H202
upon stimulation with unopsonized
zymosan particles (20). Note that although
cells harvested from silica-exposed rats are

macrophages and granulocytes, unopson-

ized zymosan does not activate granulocytes.
In vivo exposure to silica also induces nitric
oxide synthase in pulmonary phagocytes
and increases NO-dependent chemilumi-
nescence generated by zymosan-stimulated
macrophages (21). Figure 7 shows that
mRNA for inducible nitric oxide synthase
is increased approximately 3-fold in pul-
monary phagocytes harvested 1 day after
intratracheal instillation of silica. This NO-
synthase is primed to produce approxi-
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Figure 8. Effect of in vivo silica exposure on NO-
dependent zymosan-stimulated chemiluminescence
from alveolar macrophages. Macrophages were har-
vested 1 day after intratracheal instillation of silica (10
mg/g bw). NO-dependent CL was calculated as CL in
the presence of 2 mg/ml unopsonized zymosan minus
CL in the presence of zymosan plus 1 mM L-NAME (an
inhibitor of NO synthase). Data are means ± SE of four
experiments and are modified from Blackford et al.
(21).

mately 37 times more NO-dependent
chemiluminescence upon in vitro stimula-
tion with unopsonized zymosan (Figure 8).

The data above suggest that silica acti-
vates and primes alveolar macrophages to
generate reactive oxidants that can damage
lung tissue. In this indirect manner, silica
can express additional cytotoxicity. Freshly
fractured silica is a more potent stimulant
of phagocytes than aged silica, and thus,
may exhibit enhanced fibrogenic potential.

Tetrandrine is a Chinese herbal medi-
cine derived from Stephania tetrandra. This
bisbenzylisoquinoline alkaloid has a
molecular weight of 622.73 and an empiri-
cal formula of C38H4206N2' Its structure is
characterized by methoxy groups at C7 and
C12, uncharged nitrogens at N2 and N2',
and two 17-carbon ring members con-
nected by a double oxygen bridge between
C8-C7' and C11-C12'. Tetrandrine has
been reported to decrease several silica-
induced pulmonary responses in a rat
model, such as collagen and hydroxyproline
accumulation, lung weight gain, and nodule
production (22-25).

Data from my laborator,v indicate that
tetrandrine effectively inhibits the stimula-
tion of alveolar macrophages in vitro (19).
Tetrandrine decreases silica-induced oxy-
gen consumption by 95%, inhibits quartz-
stimulated H202 production by 87%, and
depresses silica-dependent chemilumines-
cence by 64% (Figure 9).IDco values for
this inhibition by tetrandrine are in the
range of 30 pM. Tetrandrine (administered
orally, 33 pg/g bw daily) is also effective in
vivo, i.e., decreasing potentiation ofH2d2
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Figure 9. Effect of tetrandrine in vitro on silica-induced
activation of alveolar macrophages. For oxygen con-
sumption (02), cells were exposed at 37°C to 1.7
mg/ml silica in the absence or presence of tetrandrine
(75 pM). For hydrogen peroxide release, cells were

exposed at 37°C to 1 mg/ml silica in the absence or
presence of tetrandrine (27 pM). For chemilumines-
cence, cells were exposed at 37°C to 0.5 mg/ml silica
in the absence or presence of 40 pM tetrandrine. Data
modified from Castranova et al. (19).
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Figure 10. Priming of zymosan-stimulated H202 pro-
duction in alveolar macrophages harvested from silica-
exposed rats: effect of oral tetrandrine treatment. Rat
were intratracheally instilled with 40 mg silica and
orally treated for 30 days with tetrandrine (33 pg/g bw)
or vehicle (H20). After 30 days, alveolar macrophages
were harvested and H202 release measured at 37°C in
response to unopsonized zymosan stimulation
(2 mg/ml). Data are means ± SE of three experiments
and are modified from Castranova et al. (20).

production in alveolar macrophages har-
vested 30 days after an intratracheal instil-
lation of 40 mg silica (20). Figure 10
shows that tetrandrine decreases the in vivo
priming of alveolar macrophages by 30%.

The above data indicate that tetran-

drine is effective in blocking silica-induced
activation of alveolar macrophages in vitro
and silica-dependent priming of the phago-
cytes in vivo. These inhibitory effects are

obtained at doses of tetrandrine that do not

compromise the viability of these phago-
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cytes. Therefore, tetrandrine may express
antifibrotic activity in part by decreasing
the production of damaging oxidant
species from alveolar macrophages.

In conclusion, data presented in this
review support the hypothesis that oxidant

injury plays a role in the pathogenesis of
silicosis. These reactive oxygen species can
be derived from two sources: direct -OH
generation from freshly fractured silica, and
O-, H202, and NO produced from silica-
exposed alveolar macrophages. In addition,

information not presented in this review
indicates that oxygen species from recruited
blood leukocytes also play a role in the devel-
opment ofsilica-induced lung injury (5).
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